Three-Dimensional Gaze Projection Heat-Mapping of Outdoor Mobile Eye-Tracking Data
Main Article Content
Abstract
The mobilization of eye-tracking for use outside of the laboratory provides new opportunities for the assessment of pedestrian visual engagement with their surroundings. However, the development of data representation techniques that visualize the dynamics of pedestrian gaze distribution upon the environment they are situated within remains limited. The current study addresses this through highlighting how mobile eye-tracking data, which captures where pedestrian gaze is focused upon buildings along urban street edges, can be mapped as three-dimensional gaze projection heat-maps. This data processing and visualization technique is assessed during the current study along with future opportunities and associated challenges discussed.
Article Details
References
Alexiou, E., Xu, P., & Ebrahimi, T. (2019). Towards modelling of visual saliency in point clouds for immersive applications. 26th IEEE International Conference on Image Processing (ICIP). Taipei, Taiwan. DOI: https://doi.org/10.1109/icip.2019.8803479
Badrinarayanan, V., Kendall, A. & Cipolla, R. (2017). SegNet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12), 2481-2495. DOI: https://doi.org/10.1109/tpami.2016.2644615
Billger, M., Thuvander, L. & Wästberg, B. S. (2017). In search of visualization challenges: The development and implementation of visualization tools for supporting dialogue in urban planning processes. Environment and Planning B: Urban Analytics and City Science, 44(6), 1012-1035. DOI: https://doi.org/10.1177/0265813516657341
Birenboim, A. (2018). The influence of urban environments on our subjective momentary experiences. Environment and Planning B: Urban Analytics and City Science, 45(5), 915-932. DOI: https://doi.org/10.1177/2399808317690149
Chiel, H. J. & Beer, R. D. (1997). The brain has a body: Adaptive behavior emerges from interactions of nervous system, body and environment. Trends in Neurosciences, 20(12), 553-557. DOI: https://doi.org/10.1016/s0166-2236(97)01149-1
Cuthbert, A. R. (2007). Urban design: Requiem for an era–review and critique of the last 50 years. Urban Design International, 12(4), 177-223. DOI: https://doi.org/10.1057/palgrave.udi.9000200
Duchowny, K., Clarke, P., Gallagher, N. A., et al. (2018). Using mobile, wearable, technology to understand the role of built environment demand for outdoor mobility. Environment and Behavior, 51(6), 671-688. DOI: https://doi.org/10.1177/0013916517749256
Duchowski, A. T. (2017). Eye Tracking Methodology: Theory and Practice. Springer.
Emo, B. (2015). Exploring isovists: The egocentric perspective. 10th International Space Syntax Symposium (SSS). London.
Emo, B. (2018). Choice zones: Architecturally relevant areas of interest. Spatial Cognition & Computation, 18(3), 173-193. DOI: https://doi.org/10.1080/13875868.2017.1412443
Findlay, J. M. & Gilchrist, I. D. (2003). Active vision: The Psychology of Looking and Seeing. Oxford UP.
Fisher-Gewirtzman, D. (2018). Integrating ‘weighted views’ to quantitative 3D visibility analysis as a predictive tool for perception of space. Environment and Planning B: Urban Analytics and City Science, 45(2), 345-366. DOI: https://doi.org/10.1177/0265813516676486
Fisher-Gewirtzman, D., Burt, M., & Tzamir, Y. (2003). A 3-D visual method for comparative evaluation of dense built-up environments. Environment and Planning B: Planning and Design, 30 (4), 575-587. DOI: https://doi.org/10.1068/b2941
Fisher-Gewirtzman, D. & Wagner, I. A. (2003). Spatial openness as a practical metric for evaluating built-up environments. Environment and Planning B: Planning and Design, 30 (1), 37-49. DOI: https://doi.org/10.1068/b12861
Fotios, S., Uttley, J., & Yang, B. (2015). Using eye-tracking to identify pedestrians’ critical visual tasks. Part 2. Fixation on pedestrians. Lighting Research & Technology, 47 (2), 149-160. DOI: https://doi.org/10.1177/1477153514522473
Foulsham, T., Walker, E., & Kingstone, A. (2011). The where, what and when of gaze allocation in the lab and the natural environment. Vision Research, 51 (17), 1920-1931. DOI: https://doi.org/10.1016/j.visres.2011.07.002
Gallagher, S. (2005). How the Body Shapes the Mind. Oxford UP.
Gehl, J. (2010). Cities for People. Island Press.
Gehl, J., Kaefer, L. J., & Reigstad, S. (2006). Close encounters with buildings. Urban Design International, 11 (1), 29-47. DOI: https://doi.org/10.1057/palgrave.udi.9000162
Gibson, J. (1979). The Ecological Approach to Visual Perception. Houghton Mifflin.
Gramann, K., Gwin, J. T., Ferris, D. P., et al. (2011). Cognition in action: Imaging brain/body dynamics in mobile humans. Reviews in the Neurosciences, 22(6), 593-608. DOI: https://doi.org/10.1515/rns.2011.047
Hall, E. T. (1966). The Hidden Dimension. Doubleday.
Hassan, D. M., Moustafa, Y. M., & El-Fiki, S. M. (2019). Ground-floor façade design and staying activity patterns on the sidewalk: A case study in the Korba area of Heliopolis, Cairo, Egypt. Ain Shams Engineering Journal, 10 (3), 453-461. DOI: https://doi.org/10.1016/j.asej.2018.12.006
Hausdorff, J. M., Yogev, G., Springer, S., et al. (2005). Walking is more like catching than tapping: Gait in the elderly as a complex cognitive task. Experimental Brain Research, 164(4), 541-548. DOI: https://doi.org/10.1007/s00221-005-2280-3
Heft, H. (2019). What’s wrong with using photographs of the environment in environmental perception research? 20th Environmental Design Research Association (EDRA) Conference. Brooklyn, NY.
Hein, J. R., Evans, J., & Jones, P. (2008). Mobile methodologies: Theory, technology and practice. Geography Compass, 2 (5), 1266-1285. DOI: https://doi.org/10.1111/j.1749-8198.2008.00139.x
Hollander, J. B., Purdy, A., Wiley, A., et al. (2019) Seeing the city: Using eye-tracking technology to explore cognitive responses to the built environment. Journal of Urbanism: International Research on Placemaking and Urban Sustainability, 12(2), 156-171. DOI: https://doi.org/10.1080/17549175.2018.1531908
Hollander, J. B., Sussman, A., Purdy, A., et al. (2020). Using eye-tracking to understand human responses to traditional neighborhood designs. Planning Practice & Research, 35(5), 1-25. DOI: https://doi.org/10.1080/02697459.2020.1768332
Holmqvist, K., Nyström, M., Andersson, R., et al. (2011). Eye Tracking: A Comprehensive Guide to Methods and Measures. Oxford UP.
Huskinson, L. (2018). Architecture and the Mimetic Self: A Psychoanalytic Study of How Buildings Make and Break our Lives. Routledge. DOI: https://doi.org/10.4324/9781351247320
Jelic, A., Tieri, G., De Matteis, F., et al. (2016). The enactive approach to architectural experience: A neurophysiological perspective on embodiment, motivation, and affordances. Frontiers in Psychology, 7, 1-20. DOI: https://doi.org/10.3389/fpsyg.2016.00481
Karssenberg, H, Laven J, Glaser M, et al. (2016). The City at Eye Level: Lessons for Street Plinths.
Kiefer, P., Giannopoulos, I., & Raubal, M. (2014). Where am I? Investigating map matching during self-localization with mobile eye tracking in an urban environment. Transactions in GIS, 18(5), 660-686. DOI: https://doi.org/10.1111/tgis.12067
Kiefer, P., Giannopoulos, I., & Raubal, M., et al. (2017). Eye tracking for spatial research: Cognition, computation, challenges. Spatial Cognition & Computation, 17(1-2), 1-19. DOI: https://doi.org/10.1080/13875868.2016.1254634
Koletsis, E., van Elzakker, C. P. J. M., Kraak, M-J., et al. (2017). An investigation into challenges experienced when route planning, navigating and wayfinding. International Journal of Cartography, 3(1), 4-18. DOI: https://doi.org/10.1080/23729333.2017.1300996
Krukar, J., Schultz, C., & Bhatt, M. (2017). Towards embodied 3d isovists: Incorporating cognitively-motivated semantics of `space’ and the architectural environment in 3D visibility analysis. 11th International Space Syntax Symposium (SSS). Lisbon, Portugal.
Ladouce, S., Donaldson, D. I., Dudchenko, P. A., et al. (2017). Understanding minds in real-world environments: Toward a mobile cognition approach. Frontiers in Human Neuroscience 10, 1-14. DOI: https://doi.org/10.3389/fnhum.2016.00694
Li, X., Yu, L., Fu, C-W., et al. (2019). Unsupervised detection of distinctive regions on 3D shapes. CoRR, 1(1), 1-16.
Lin, T., Lin. H., & Hu, M. (2017). Three-dimensional visibility analysis and visual quality computation for urban open spaces aided by Google SketchUp and WebGIS. Environment and Planning B: Urban Analytics and City Science, 44 (4), 618-646. DOI: https://doi.org/10.1177/0265813515605097
Lynch, K. & Hack, G. (1984). Site Planning. MIT press.
Mallgrave, H. F. (2013). Architecture and Embodiment: The Implications of the New Sciences and Humanities for Design. Routledge.
Mallgrave, H. F. (2015). Embodiment and enculturation: The future of architectural design. Frontiers in Psychology 6: 1-6. DOI: https://doi.org/10.3389/fpsyg.2015.01398
Mallgrave, H. F. (2018). From Object to Experience: The New Culture of Architectural Design. Bloomsbury Publishing.
Marius’t Hart, B. & Einhäuser, W. (2012). Mind the step: Complementary effects of an implicit task on eye and head movements in real life gaze allocation. Experimental Brain Research, 223 (2), 233-249. DOI: https://doi.org/10.1007/s00221-012-3254-x
Marshall, S. (2012). Science, pseudo-science and urban design. Urban Design International, 17 (4), 257-271. DOI: https://doi.org/10.1057/udi.2012.22
Mavros, P., Austwick M. Z., & Smith A. H. (2016). Geo-EEG: Towards the use of EEG in the study of urban behaviour. Applied Spatial Analysis and Policy, 9(2), 191-212. DOI: https://doi.org/10.1007/s12061-015-9181-z
Mehta, V. (2013). The Street: A Quintessential Social Public Space. Routledge.
Middel, A., Lukasczyk, J., Zakrzewski, S., et al. (2019). Urban form and composition of street canyons: A human-centric big data and deep learning approach. Landscape and Urban Planning 183, 122-132. DOI: https://doi.org/10.1016/j.landurbplan.2018.12.001
Morello, E. & Ratti, C. (2009). A digital image of the city: 3D isovists in Lynch’s urban analysis. Environment and Planning B: Planning and Design, 36(5), 837-853. DOI: https://doi.org/10.1068/b34144t
Mu?ller-Feldmeth, D., Schwarzkopf, S., Bu?chner, S. J., et al. (2014). Location dependent fixation analysis with sight vectors: Locomotion as a challenge in mobile eye tracking. 2nd International Workshop on Eye Tracking for Spatial Research (ET4S). Vienna, Austria.
Noland, R. B., Weiner, M. D., Gao, D., et al. (2017). Eye-tracking technology, visual preference surveys, and urban design: Preliminary evidence of an effective methodology. Journal of Urbanism: International Research on Placemaking and Urban Sustainability, 10 (1), 98-110. DOI: https://doi.org/10.1080/17549175.2016.1187197
Pfeiffer, T. & Memili, C. (2016) Model-based real-time visualization of realistic three-dimensional heat maps for mobile eye tracking and eye tracking in virtual reality. Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research & Applications, 95-102. DOI: https://doi.org/10.1145/2857491.2857541
Rahman, M. N. & Mehta, V. (2020) Signage Form and Character: a window to neighborhood visual identity. Interdisciplinary Journal of Signage and Wayfinding, 4(1), 35-48. DOI: https://doi.org/10.15763/issn.2470-9670.2020.v4.i1.a59
Rothkopf, C. A., Ballard, D. H. & Hayhoe, M. M. (2007). Task and context determine where you look. Journal of Vision, 7(14), 1-20. DOI: https://doi.org/10.1167/7.14.16
Schwarzkopf, S., Bu?chner, S. J., Hölscher, C., et al. (2017). Perspective tracking in the real world: Gaze angle analysis in a collaborative wayfinding task. Spatial Cognition & Computation, 17(1-2), 143-162. Interdisciplinary
Journal of Signage and Wayfinding; Vol. 5, No. 1 (2021) 74. DOI: https://doi.org/10.1080/13875868.2016.1226841
Simpson, J., Freeth, M., Simpson, K. J., et al. (2019a). Visual engagement with urban street edges: Insights using mobile eye-tracking. Journal of Urbanism: International Research on Placemaking and Urban Sustainability, 12(3), 259-278. DOI: https://doi.org/10.1080/17549175.2018.1552884
Simpson, J., Thwaites, K., & Freeth, M. (2019b). Understanding Visual Engagement with Urban Street Edges along Non-Pedestrianised and Pedestrianised Streets Using Mobile Eye-Tracking. Sustainability, 11(15), 4251. DOI: https://doi.org/10.3390/su11154251
Spinney, J. (2015). Close encounters? Mobile methods, (post)phenomenology and affect. Cultural Geographies, 22(2), 231-246. DOI: https://doi.org/10.1177/1474474014558988
Sun, M., Herrup, K., Shi, B., et al. (2018). Changes in visual interaction: Viewing a Japanese garden directly, through glass or as a projected image. Journal of Environmental Psychology, 60, 116-121. DOI: https://doi.org/10.1016/j.jenvp.2018.10.009
Tang, M. (2020). Analysis of Signage Using Eye-Tracking Technology. Interdisciplinary Journal of Signage and Wayfinding, 4(1), 61-72. DOI: https://doi.org/10.15763/issn.2470-9670.2020.v4.i1.a56
Thomas, N. D. A., Gardiner, J. D., Crompton, R. H., et al. (2020). Look out: An exploratory study assessing how gaze (eye angle and head angle) and gait speed are influenced by surface complexity. PeerJ, 8, 1-13. DOI: https://doi.org/10.7717/peerj.8838
Thwaites, K., Simpson, J., & Simkins, I. (2020). Transitional edges: A conceptual framework for socio-spatial understanding of urban street edges. Urban Design International, 25, 295–309. DOI: https://doi.org/10.1057/s41289-020-00115-9
Turner, A. (2017). Partners in the street ballet: An embodied process of person-space coupling in the built environment. Environment and Planning B: Urban Analytics and City Science, 44(2), 294-307. DOI: https://doi.org/10.1177/0265813516638185
Turner, A. & Penn, A. (2002). Encoding natural movement as an agent-based system: An investigation into human pedestrian behaviour in the built environment. Environment and Planning B: Planning and Design, 29(4), 473-490. DOI: https://doi.org/10.1068/b12850
Uttley, J., Fotios, S., & Cheal, C. (2016). Measuring perceived safety after-dark – three alternatives to rating scales. 24th International Association of People-Environment Studies (IAPS) Conference. Lund, Sweden.
Uttley, J., Simpson, J., & Qasem, H. (2018). Eye-tracking in the real world: Insights about the urban environment. In: Handbook of Research on Perception-Driven Approaches to Urban Assessment and Design. IGI Global. DOI: https://doi.org/10.4018/978-1-5225-3637-6.ch016
Wang, X., Koch, S., Holmqvist, K., et al. (2018). Tracking the gaze on objects in 3D: How do people really look at the bunny? ACM Transactions on Graphics, 37(6), 1-18. DOI: https://doi.org/10.1145/3272127.3275094
Yang, P. P-J., Putra S. Y., & Li, W. (2007). Viewsphere: A GIS-based 3D visibility analysis for urban design evaluation. Environment and Planning B: Planning and Design, 34(6), 971-992. DOI: https://doi.org/10.1068/b32142
Ye Y., Zeng W., Shen Q, et al. (2019) The visual quality of streets: A human-centred continuous measurement based on machine learning algorithms and street view images. Environment and Planning B: Urban Analytics and City Science 46(8), 1439-1457. DOI: https://doi.org/10.1177/2399808319828734