A Comparison of the Serial Order Strategy and the Associative Cue Strategy for Decision Making in Wayfinding Tasks

Main Article Content

Otmar Bock
Steliana Borisova

Abstract

 


 It has been proposed that in wayfinding, humans can use multiple strategies to decide which direction to take at intersections. One of them is the serial order strategy, where travelers memorize the order in which those directions should be taken. Another is the associative cue strategy, where travelers memorize associations between conspicuous objects along the way, and the directions to take. We designed tasks in which participants had to base their decisions on the serial order strategy (task S), on the associative cue strategy (task A), or were free to use either of those strategies (task SA). We found that performance errors decreased with practice in all three tasks but were higher in A than in S and SA. We conclude that in our study, the serial order strategy was more efficient than the paired associate strategy. We further conclude that this outcome is likely to depend on task demand, which calls for additional research that varies not only the available strategies, but also the task demand. 

Article Details

Section
Articles

References

Arndt, J. (2012). Paired-Associate Learning. In N. M. Seel (Ed.), Encyclopedia of the Sciences of Learning (pp. 2551–2552). Springer US. DOI: https://doi.org/10.1007/978-1-4419-1428-6_1038

doi.org/10.1007/978-1-4419-1428-6_1038

Bru?gger, A., Richter, K.-F., & Fabrikant, S. I. (2019). How does navigation system behavior influence human behavior? Cognitive Research: DOI: https://doi.org/10.1186/s41235-019-0156-5

Principles and Implications, 4(1), Article 5. doi.org/10.1186/s41235-019-0156-5

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). New York: Academic Press.

Cohen, R., & Schuepfer, T. (1980). The representation of landmarks and routes. Child Development, 51(4), 1065–1071. doi. DOI: https://doi.org/10.2307/1129545

org/10.2307/1129545

Coutrot, A., Schmidt, S., Coutrot, L., Pittman, J., Hong, L., Wiener, J. M., Hölscher, C., Dalton, R. C., Hornberger, M., & Spiers, H. J. (2019).

Virtual navigation tested on a mobile app is predictive of real-world way finding navigation performance. PloS One, 14(3),

Article e0213272. doi.org/10.1371/journal.pone.0213272

Dong, W., Qin, T., Liao, H., Liu, Y., & Liu, J. (2020). Comparing the roles of landmark visual salience and semantic salience in visual DOI: https://doi.org/10.1080/15230406.2019.1697965

guidance during indoor wayfinding. Cartography and Geographic Information Science, 47(3), 229–243.

doi.org/10.1080/15230406.2019.1697965

Ekstrom, A. D., Spiers, H. J., Bohbot, V. D., & Rosenbaum, R. S. (2018). Human spatial navigation. Princeton University Press. DOI: https://doi.org/10.2307/j.ctvc773wg

Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the

social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. doi.org/10.3758/BF03193146

Field, A. (2018). Discovering statistics using IBM SPSS statistics (5th ed.) London: Sage.

Grant, S. C., & Magee, L. E. (1998). Contributions of proprioception to navigation in virtual environments. Human Factors, DOI: https://doi.org/10.1518/001872098779591296

(3), 489–497. doi.org/10.1518/001872098779591296

Hamburger, K. (2020). Visual landmarks are exaggerated: A theoretical and empirical view on the meaning of landmarks DOI: https://doi.org/10.1007/s13218-020-00668-5

in human wayfinding. KI-Ku?nstliche Intelligenz, 34, 557–562. doi.org/10.1007/s13218-020-00668-5

Hamburger, K., & Röser, F. (2014). The role of landmark modality and familiarity in human wayfinding. Swiss Journal of DOI: https://doi.org/10.1024/1421-0185/a000139

Psychology, 73(4), 205–213. doi.org/10.1024/1421-0185/a000139

Hölscher, C., Buchner, S. J., Meilinger, T., & Strube, G. (2009). Adaptivity of wayfinding strategies in a multi-building

ensemble: The effects of spatial structure, task requirements, and metric information. Journal of Environmental

Psychology, 29(2), 208–219. doi.org/10.1016/j.jenvp.2008.05.010

Iaria, G., Petrides, M., Dagher, A., Pike, B., & Bohbot, V. D. (2003). Cognitive Strategies Dependent on the Hippocampus

and Caudate Nucleus in Human Navigation: Variability and Change with Practice. The Journal of Neuroscience,

(13), 5945–5952. doi.org/10.1523/JNEUROSCI.23-13-05945.2003

Jacobs, W. J., Laurance, H. E. and Thomas, K. G. F. (1997). Place learning in virtual space I: Acquisition, overshadowing, and

transfer. Learning and Motivation, 28(4), 521–541. doi:10.1006/lmot.1997.0977 DOI: https://doi.org/10.1006/lmot.1997.0977

Jansen-Osmann, P. (2002). Using desktop virtual environments to investigate the role of landmarks. Computers in Human DOI: https://doi.org/10.1016/S0747-5632(01)00055-3

Behavior, 18(4), 427–436. doi.org/10.1016/S0747-5632(01)00055-3

Jansen-Osmann, P., & Fuchs, P. (2006). Wayfinding behavior and spatial knowledge of adults and children in a virtual environment: DOI: https://doi.org/10.1027/1618-3169.53.3.171

The role of landmarks. Experimental Psychology, 53(3), 171–181. doi.org/10.1027/1618-3169.53.3.171

Jansen-Osmann, P., & Wiedenbauer, G. (2004). The representation of landmarks and routes in children and adults: A study DOI: https://doi.org/10.1016/j.jenvp.2004.08.003

in a virtual environment. Journal of Environmental Psychology, 24(3), 347–357. doi.org/10.1016/j.jenvp.2004.08.003

Karimpur, H., Röser, F., & Hamburger, K. (2016). Finding the return path: Landmark position effects and the influence of DOI: https://doi.org/10.3389/fpsyg.2016.01956

perspective. Frontiers in Psychology, 7, Article 1956. doi.org/10.3389/fpsyg.2016.01956

Liben, L. S., Myers, L. J., & Christensen, A. E. (2010). Identifying locations and directions on field and representational DOI: https://doi.org/10.1080/13875860903568550

mapping tasks: Predictors of success. Spatial Cognition and Computation, 10(2-3), 105–134.

doi.org/10.1080/13875860903568550

Lingwood, J., Blades, M., Farran, E. K., Courbois, Y., & Matthews, D. (2015). The development of wayfinding abilities in

children: Learning routes with and without landmarks. Journal of Environmental Psychology, 41, 74–80.

doi.org/10.1016/j.jenvp.2014.11.008

Morris, R. (1984). Developments of a water-maze procedure for studying spatial learning in the rat. Journal of Neuroscience

Methods, 11(1), 47–60. doi:10.1016/0165-0270(84)90007-4 DOI: https://doi.org/10.1016/0165-0270(84)90007-4

Mu?nzer, S., Zimmer, H. D., Schwalm, M., Baus, J., & Aslan, I. (2006). Computer-assisted navigation and the acquisition of route DOI: https://doi.org/10.1016/j.jenvp.2006.08.001

and survey knowledge. Journal of Environmental Psychology, 26(4), 300–308. doi.org/10.1016/j.jenvp.2006.08.001

O’Keefe, J. and Nadel, L. (1978). The Hippocampus as a Cognitive Map. Oxford: Clarendon Press.

O’Malley, M., Innes, A., & Wiener, J. M. (2018). How do we get there? Effects of cognitive aging on route memory. Memory DOI: https://doi.org/10.3758/s13421-017-0763-7

& Cognition, 46(2), 274–284. doi.org/10.3758/s13421-017-0763-7

Rao, J. S. (1976). Some Tests Based on Arc-Lengths for the Circle. Sankhy?: The Indian Journal of Statistics, Series B (1960-

, 38(4), 329–338. www.jstor.org/stable/25052032

Richardson, A. E., Montello, D. R., & Hegarty, M. (1999). Spatial knowledge acquisition from maps and from navigation in real DOI: https://doi.org/10.3758/BF03211566

and virtual environments. Memory & Cognition, 27(4), 741–750. doi.org/10.3758/BF03211566

Rieser, J. J. (1989). Access to knowledge of spatial structure at novel points of observation. Journal of Experimental Psychology: DOI: https://doi.org/10.1037/0278-7393.15.6.1157

Learning, Memory, and Cognition, 15(6), 1157–1165. doi.org/10.1037/0278-7393.15.6.1157

Ruddle, R. A., Payne, S. J., & Jones, D. M. (1997). Navigating buildings in” desk-top” virtual environments: experimental investigations DOI: https://doi.org/10.1037/1076-898X.3.2.143

using extended navigational experience. Journal of Experimental Psychology: Applied, 3(2), 143–159.

doi.org/10.1037/1076-898X.3.2.143

Strickrodt, M., O’Malley, M., & Wiener, J. M. (2015). This place looks familiar—how navigators distinguish places with ambiguous land DOI: https://doi.org/10.3389/fpsyg.2015.01936

mark objects when learning novel routes. Frontiers in Psychology, 6, Article 1936. doi.org/10.3389/fpsyg.2015.01936

Tlauka, M., & Wilson, P. N. (1994). The effect of landmarks on route-learning in a computer-simulated environment. Journal of Environmental DOI: https://doi.org/10.1016/S0272-4944(05)80221-X

Psychology, 14(4), 305–313. doi.org/10.1016/S0272-4944(05)80221-X

Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55(4), 189–208. DOI: https://doi.org/10.1037/h0061626

Waller, D., Hunt, E., & Knapp, D. (1998). The transfer of spatial knowledge in virtual environment training. Presence, 7(2), 129–143. doi. DOI: https://doi.org/10.1162/105474698565631

org/10.1162/105474698565631

Waller, D., & Lippa, Y. (2007). Landmarks as beacons and associative cues: Their role in route learning. Memory & Cognition, 35(5), DOI: https://doi.org/10.3758/BF03193465

–924. doi.org/10.3758/BF03193465

Wang, L., Mou, W., & Sun, X. (2014). Development of landmark knowledge at decision points. Spatial Cognition and Computation, 14(1), DOI: https://doi.org/10.1080/13875868.2013.784768

–17. doi.org/10.1080/13875868.2013.784768

Wiener, J. M., Bu?chner, S. J., & Hölscher, C. (2009). Taxonomy of human wayfinding tasks: A knowledge-based approach. Spatial Cognition DOI: https://doi.org/10.1080/13875860902906496

and Computation, 9(2), 152–165. doi.org/10.1080/13875860902906496

Wiener, J. M., Hölscher, C., Bu?chner, S., & Konieczny, L. (2012). Gaze behaviour during space perception and spatial decision making. DOI: https://doi.org/10.1007/s00426-011-0397-5

Psychological Research, 76(6), 713–729. https://doi.org/10.1007/S00426-011-0397-5/FIGURES/9

Wolbers, T., & Hegarty, M. (2010). What determines our navigational abilities? Trends in Cognitive Sciences, 14(3), 138–146. doi. DOI: https://doi.org/10.1016/j.tics.2010.01.001

org/10.1016/j.tics.2010.01.001

Wolbers, T., Wiener, J. M., Mallot, H. A., & Bu?chel, C. (2007). Differential recruitment of the hippocampus, medial prefrontal cortex, and

the human motion complex during path integration in humans. The Journal of Neuroscience, 27(35), 9408–9416. doi.

org/10.1523/JNEUROSCI.2146-07.2007

Zhang, H., Zherdeva, K., & Ekstrom, A. D. (2014). Different “routes” to a cognitive map: Dissociable forms of spatial knowledge derived DOI: https://doi.org/10.3758/s13421-014-0418-x

from route and cartographic map learning. Memory & Cognition, 42(7), 1106–1117. doi.org/10.3758/s13421-014-0418-x