Landmarks on Mobile Maps: Roles of Visual Variables in the Acquisition of Spatial Knowledge

Main Article Content

Andrew Kim
Rui Li

Abstract

 


 This study presents the evaluation of a new design of mobile maps to overcome the limit of the small screen by visualizing landmarks which are normally invisible as located beyond the displayed map extent. The visualization of distant landmarks adapts a specific cartographic visual variable: size, fuzziness, or transparency, respectively, to conceptualize distances in three ranges: nearby, intermediate, and far. To evaluate the effectiveness of each design on acquisition of spatial knowledge, this study carries out an online experiment and then a field experiment in the actual environment. In the online experiment, participants see the static default screen of the mobile maps with landmarks. In the field experiment, participants can interact with the mobile map App which allows them to tap, pan, or zoom the map. Results show that both online and field experiments yield similar findings, although the results from field experiment with allowed interaction are better. In general, the visualization of distant landmarks contributes to the spatial learning. Individual visual variables such as fuzziness and transparency, however, facilitate the acquisition of spatial knowledge better than size. 

Article Details

Section
Articles

References

Allen, K., Gil, M., Resnik, E., Toader, O., Seeburg, P., & Monyer, H. (2014). Impaired path integration and

grid cell spatial periodicity in mice lacking gluA1-containing AMPA receptors. Journal of

Neuroscience, 34(18), 6245–6259. https://doi.org/10.1523/JNEUROSCI.4330-13.2014 DOI: https://doi.org/10.1523/JNEUROSCI.4330-13.2014

Baudisch, P., & Rosenholtz, R. (2003). Halo: A technique for visualizing off-screen objects. CHI, 5,

–488. https://doi.org/10.1145/642611.642695 DOI: https://doi.org/10.1145/642611.642695

Couclelis, H., Golledge, R. G., Gale, N., & Tobler, W. (1987). Exploring the anchor-point hypothesis of DOI: https://doi.org/10.1016/S0272-4944(87)80020-8

spatial cognition. Journal of Environmental Psychology, 7(2), 99–122. https://doi.org/10.1016/

S0272-4944(87)80020-8

Dillemuth, J. A. (2009). Navigation tasks with small-display maps: The sum of the parts does not

equal the whole. Cartographica: The International Journal for Geographic Information

and Geovisualization, 44(3), 187–200. https://doi.org/10.3138/carto.44.3.187 DOI: https://doi.org/10.3138/carto.44.3.187

Gardony, A. L., Brunyé, T. T., Mahoney, C. R., & Taylor, H. A. (2013). How navigational sids impair spatial

memory: Evidence for divided attention. Spatial Cognition & Computation, 13(4). https://doi.

org/10.1080/13875868.2013.792821

Gustafson, S., Baudisch, P., Gutwin, C., & Irani, P. (2008). Wedge: Clutter-free visualization of off-screen

locations. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,

–796. https://doi.org/10.1145/1357054.1357179 DOI: https://doi.org/10.1145/1357054.1357179

Ishikawa, T., Fujiwara, H., Imai, O., & Okabe, A. (2008). Wayfinding with a GPS-based mobile navigation

system: A comparison with maps and direct experience. Journal of Environmental

Psychology, 28, 74–82. https://doi.org/10.1016/j.jenvp.2007.09.002 DOI: https://doi.org/10.1016/j.jenvp.2007.09.002

Li, R. (2017). Effects of visual variables on the perception of distance in off-screen landmarks: Size, color DOI: https://doi.org/10.1007/978-3-319-47289-8_5

value, and crispness. In Progress in location-based services 2016 (pp. 89–103). Springer.

Li, R., Korda, A., Radtke, M., & Schwering, A. (2014). Visualising distant off-screen landmarks on mobile

devices to support spatial orientation. Journal of Location Based Services, 8(3), 166–178.

Li, R., & Zhao, J. (2017). Off-screen landmarks on mobile devices: Levels of measurement and the

perception of distance on resized icons. KI-Ku?nstliche Intelligenz, 31(2), 141–149.

Liben, L. S., Myers, L. J., & Christensen, A. E. (2010). Identifying Locations and Directions on Field and

Representational Mapping Tasks: Predictors of Success. Spatial Cognition & Computation,

(2–3), 105–134. https://doi.org/10.1080/13875860903568550 DOI: https://doi.org/10.1080/13875860903568550

Linn, M. C., & Petersen, A. C. (1985). Emergence and Characterization of Sex Differences in Spatial DOI: https://doi.org/10.2307/1130467

Ability: A Meta-Analysis. Child Development, 56(6), 1479–1498.

MacEachren, A. M., Roth, R. E., O’Brien, J., Li, B., Swingley, D., & Gahegan, M. (2012). Visual semiotics &

uncertainty visualization: An empirical study. IEEE Transactions on Visualization and Computer

Graphics, 18(12), 2496–2505.

Mittelstaedt, M.-L., & Mittelstaedt, H. (1980). Homing by path integration in a mammal. Naturwissenschaften,

(11), 566–567. https://doi.org/10.1007/BF00450672 DOI: https://doi.org/10.1007/BF00450672

Siegel, A. W., & White, S. H. (1975). The development of spatial representations of large- scale environments. DOI: https://doi.org/10.1016/S0065-2407(08)60007-5

Advances in Child Development and Behavior, 10(C), 9–55. https://doi.org/10.1016/

S0065-2407(08)60007-5

Sorrows, M. E., & Hirtle, S. C. (1999). The nature of landmarks for real and electronic spaces. Lecture Notes

in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), 1661, 37–50. https://doi.org/10.1007/3-540-48384-5_3 DOI: https://doi.org/10.1007/3-540-48384-5_3

Vandenberg, S. G., & Kuse, A. R. (1978). Mental Rotations, a Group Test of Three-Dimensional DOI: https://doi.org/10.1037/t06625-000

Spatial Visualization. Perceptual and Motor Skills, 47(2), 599–604. https://doi.org

/10.2466/pms.1978.47.2.599