Landmarks on Mobile Maps: Roles of Visual Variables in the Acquisition of Spatial Knowledge
Main Article Content
Abstract
This study presents the evaluation of a new design of mobile maps to overcome the limit of the small screen by visualizing landmarks which are normally invisible as located beyond the displayed map extent. The visualization of distant landmarks adapts a specific cartographic visual variable: size, fuzziness, or transparency, respectively, to conceptualize distances in three ranges: nearby, intermediate, and far. To evaluate the effectiveness of each design on acquisition of spatial knowledge, this study carries out an online experiment and then a field experiment in the actual environment. In the online experiment, participants see the static default screen of the mobile maps with landmarks. In the field experiment, participants can interact with the mobile map App which allows them to tap, pan, or zoom the map. Results show that both online and field experiments yield similar findings, although the results from field experiment with allowed interaction are better. In general, the visualization of distant landmarks contributes to the spatial learning. Individual visual variables such as fuzziness and transparency, however, facilitate the acquisition of spatial knowledge better than size.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Allen, K., Gil, M., Resnik, E., Toader, O., Seeburg, P., & Monyer, H. (2014). Impaired path integration and
grid cell spatial periodicity in mice lacking gluA1-containing AMPA receptors. Journal of
Neuroscience, 34(18), 6245–6259. https://doi.org/10.1523/JNEUROSCI.4330-13.2014 DOI: https://doi.org/10.1523/JNEUROSCI.4330-13.2014
Baudisch, P., & Rosenholtz, R. (2003). Halo: A technique for visualizing off-screen objects. CHI, 5,
–488. https://doi.org/10.1145/642611.642695 DOI: https://doi.org/10.1145/642611.642695
Couclelis, H., Golledge, R. G., Gale, N., & Tobler, W. (1987). Exploring the anchor-point hypothesis of DOI: https://doi.org/10.1016/S0272-4944(87)80020-8
spatial cognition. Journal of Environmental Psychology, 7(2), 99–122. https://doi.org/10.1016/
S0272-4944(87)80020-8
Dillemuth, J. A. (2009). Navigation tasks with small-display maps: The sum of the parts does not
equal the whole. Cartographica: The International Journal for Geographic Information
and Geovisualization, 44(3), 187–200. https://doi.org/10.3138/carto.44.3.187 DOI: https://doi.org/10.3138/carto.44.3.187
Gardony, A. L., Brunyé, T. T., Mahoney, C. R., & Taylor, H. A. (2013). How navigational sids impair spatial
memory: Evidence for divided attention. Spatial Cognition & Computation, 13(4). https://doi.
org/10.1080/13875868.2013.792821
Gustafson, S., Baudisch, P., Gutwin, C., & Irani, P. (2008). Wedge: Clutter-free visualization of off-screen
locations. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
–796. https://doi.org/10.1145/1357054.1357179 DOI: https://doi.org/10.1145/1357054.1357179
Ishikawa, T., Fujiwara, H., Imai, O., & Okabe, A. (2008). Wayfinding with a GPS-based mobile navigation
system: A comparison with maps and direct experience. Journal of Environmental
Psychology, 28, 74–82. https://doi.org/10.1016/j.jenvp.2007.09.002 DOI: https://doi.org/10.1016/j.jenvp.2007.09.002
Li, R. (2017). Effects of visual variables on the perception of distance in off-screen landmarks: Size, color DOI: https://doi.org/10.1007/978-3-319-47289-8_5
value, and crispness. In Progress in location-based services 2016 (pp. 89–103). Springer.
Li, R., Korda, A., Radtke, M., & Schwering, A. (2014). Visualising distant off-screen landmarks on mobile
devices to support spatial orientation. Journal of Location Based Services, 8(3), 166–178.
Li, R., & Zhao, J. (2017). Off-screen landmarks on mobile devices: Levels of measurement and the
perception of distance on resized icons. KI-Ku?nstliche Intelligenz, 31(2), 141–149.
Liben, L. S., Myers, L. J., & Christensen, A. E. (2010). Identifying Locations and Directions on Field and
Representational Mapping Tasks: Predictors of Success. Spatial Cognition & Computation,
(2–3), 105–134. https://doi.org/10.1080/13875860903568550 DOI: https://doi.org/10.1080/13875860903568550
Linn, M. C., & Petersen, A. C. (1985). Emergence and Characterization of Sex Differences in Spatial DOI: https://doi.org/10.2307/1130467
Ability: A Meta-Analysis. Child Development, 56(6), 1479–1498.
MacEachren, A. M., Roth, R. E., O’Brien, J., Li, B., Swingley, D., & Gahegan, M. (2012). Visual semiotics &
uncertainty visualization: An empirical study. IEEE Transactions on Visualization and Computer
Graphics, 18(12), 2496–2505.
Mittelstaedt, M.-L., & Mittelstaedt, H. (1980). Homing by path integration in a mammal. Naturwissenschaften,
(11), 566–567. https://doi.org/10.1007/BF00450672 DOI: https://doi.org/10.1007/BF00450672
Siegel, A. W., & White, S. H. (1975). The development of spatial representations of large- scale environments. DOI: https://doi.org/10.1016/S0065-2407(08)60007-5
Advances in Child Development and Behavior, 10(C), 9–55. https://doi.org/10.1016/
S0065-2407(08)60007-5
Sorrows, M. E., & Hirtle, S. C. (1999). The nature of landmarks for real and electronic spaces. Lecture Notes
in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 1661, 37–50. https://doi.org/10.1007/3-540-48384-5_3 DOI: https://doi.org/10.1007/3-540-48384-5_3
Vandenberg, S. G., & Kuse, A. R. (1978). Mental Rotations, a Group Test of Three-Dimensional DOI: https://doi.org/10.1037/t06625-000
Spatial Visualization. Perceptual and Motor Skills, 47(2), 599–604. https://doi.org
/10.2466/pms.1978.47.2.599